p-group, metabelian, nilpotent (class 4), monomial
Aliases: C22.2D16, C23.31D8, C22.7SD32, (C2×D8)⋊1C4, C2.D8⋊1C4, C4.18C4≀C2, C22⋊C16⋊3C2, C8⋊7D4.1C2, (C2×C8).300D4, C4.5(C23⋊C4), (C2×C4).13SD16, C2.3(C2.D16), C2.4(D8⋊2C4), (C22×C4).185D4, C22.4Q16⋊32C2, (C22×C8).97C22, C22.55(D4⋊C4), C2.12(C22.SD16), (C2×C8).17(C2×C4), (C2×C4).217(C22⋊C4), SmallGroup(128,79)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.SD32
G = < a,b,c,d,e | a2=b2=c2=1, d8=c, e2=a, ab=ba, ac=ca, dad-1=abc, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=acd7 >
Subgroups: 204 in 63 conjugacy classes, 22 normal (all characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, C23, C23, C16, C22⋊C4, C4⋊C4, C2×C8, C2×C8, D8, C22×C4, C22×C4, C2×D4, D4⋊C4, C2.D8, C2×C16, C2×C4⋊C4, C4⋊D4, C22×C8, C2×D8, C22.4Q16, C22⋊C16, C8⋊7D4, C22.SD32
Quotients: C1, C2, C4, C22, C2×C4, D4, C22⋊C4, D8, SD16, C23⋊C4, D4⋊C4, C4≀C2, D16, SD32, C22.SD16, C2.D16, D8⋊2C4, C22.SD32
Character table of C22.SD32
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 8A | 8B | 8C | 8D | 8E | 8F | 16A | 16B | 16C | 16D | 16E | 16F | 16G | 16H | |
size | 1 | 1 | 1 | 1 | 2 | 2 | 16 | 2 | 2 | 4 | 8 | 8 | 8 | 8 | 16 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -i | i | -i | i | -1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ6 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | -i | i | -i | i | 1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ7 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | i | -i | i | -i | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -i | i | -i | -i | i | i | i | -i | linear of order 4 |
ρ8 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | i | -i | i | -i | -1 | -1 | -1 | -1 | -1 | 1 | 1 | i | -i | i | i | -i | -i | -i | i | linear of order 4 |
ρ9 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | -ζ167+ζ16 | ζ167-ζ16 | ζ167-ζ16 | -ζ165+ζ163 | ζ165-ζ163 | -ζ167+ζ16 | -ζ165+ζ163 | ζ165-ζ163 | orthogonal lifted from D16 |
ρ12 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | -ζ165+ζ163 | ζ165-ζ163 | ζ165-ζ163 | ζ167-ζ16 | -ζ167+ζ16 | -ζ165+ζ163 | ζ167-ζ16 | -ζ167+ζ16 | orthogonal lifted from D16 |
ρ13 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | -√2 | -√2 | √2 | √2 | -√2 | √2 | √2 | orthogonal lifted from D8 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | √2 | √2 | -√2 | -√2 | √2 | -√2 | -√2 | orthogonal lifted from D8 |
ρ15 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | -√2 | √2 | ζ165-ζ163 | -ζ165+ζ163 | -ζ165+ζ163 | -ζ167+ζ16 | ζ167-ζ16 | ζ165-ζ163 | -ζ167+ζ16 | ζ167-ζ16 | orthogonal lifted from D16 |
ρ16 | 2 | -2 | -2 | 2 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | √2 | -√2 | ζ167-ζ16 | -ζ167+ζ16 | -ζ167+ζ16 | ζ165-ζ163 | -ζ165+ζ163 | ζ167-ζ16 | ζ165-ζ163 | -ζ165+ζ163 | orthogonal lifted from D16 |
ρ17 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -1+i | 1+i | 1-i | -1-i | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ18 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | -1-i | 1-i | 1+i | -1+i | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ19 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | complex lifted from SD16 |
ρ20 | 2 | 2 | 2 | 2 | -2 | -2 | 0 | -2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | √-2 | -√-2 | complex lifted from SD16 |
ρ21 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 1+i | -1+i | -1-i | 1-i | 0 | -2i | 2i | 2i | -2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ22 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 2 | -2 | 0 | 1-i | -1-i | -1+i | 1+i | 0 | 2i | -2i | -2i | 2i | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from C4≀C2 |
ρ23 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ165+ζ163 | ζ165+ζ163 | ζ1613+ζ1611 | ζ167+ζ16 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ1615+ζ169 | complex lifted from SD32 |
ρ24 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ1615+ζ169 | ζ1615+ζ169 | ζ167+ζ16 | ζ165+ζ163 | ζ165+ζ163 | ζ167+ζ16 | ζ1613+ζ1611 | ζ1613+ζ1611 | complex lifted from SD32 |
ρ25 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -√2 | √2 | -√2 | √2 | √2 | -√2 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ165+ζ163 | ζ1615+ζ169 | ζ1615+ζ169 | ζ165+ζ163 | ζ167+ζ16 | ζ167+ζ16 | complex lifted from SD32 |
ρ26 | 2 | -2 | -2 | 2 | -2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | √2 | -√2 | √2 | -√2 | -√2 | √2 | ζ167+ζ16 | ζ167+ζ16 | ζ1615+ζ169 | ζ1613+ζ1611 | ζ1613+ζ1611 | ζ1615+ζ169 | ζ165+ζ163 | ζ165+ζ163 | complex lifted from SD32 |
ρ27 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from C23⋊C4 |
ρ28 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | -2√-2 | -2√-2 | 2√-2 | 2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊2C4 |
ρ29 | 4 | 4 | -4 | -4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2√-2 | 2√-2 | -2√-2 | -2√-2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | complex lifted from D8⋊2C4 |
(2 31)(4 17)(6 19)(8 21)(10 23)(12 25)(14 27)(16 29)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 31)(11 32)(12 17)(13 18)(14 19)(15 20)(16 21)
(1 9)(2 10)(3 11)(4 12)(5 13)(6 14)(7 15)(8 16)(17 25)(18 26)(19 27)(20 28)(21 29)(22 30)(23 31)(24 32)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)
(2 29 31 16)(3 28)(4 14 17 27)(5 13)(6 25 19 12)(7 24)(8 10 21 23)(11 20)(15 32)(18 26)
G:=sub<Sym(32)| (2,31)(4,17)(6,19)(8,21)(10,23)(12,25)(14,27)(16,29), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,17)(13,18)(14,19)(15,20)(16,21), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,29,31,16)(3,28)(4,14,17,27)(5,13)(6,25,19,12)(7,24)(8,10,21,23)(11,20)(15,32)(18,26)>;
G:=Group( (2,31)(4,17)(6,19)(8,21)(10,23)(12,25)(14,27)(16,29), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,31)(11,32)(12,17)(13,18)(14,19)(15,20)(16,21), (1,9)(2,10)(3,11)(4,12)(5,13)(6,14)(7,15)(8,16)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32), (2,29,31,16)(3,28)(4,14,17,27)(5,13)(6,25,19,12)(7,24)(8,10,21,23)(11,20)(15,32)(18,26) );
G=PermutationGroup([[(2,31),(4,17),(6,19),(8,21),(10,23),(12,25),(14,27),(16,29)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,31),(11,32),(12,17),(13,18),(14,19),(15,20),(16,21)], [(1,9),(2,10),(3,11),(4,12),(5,13),(6,14),(7,15),(8,16),(17,25),(18,26),(19,27),(20,28),(21,29),(22,30),(23,31),(24,32)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)], [(2,29,31,16),(3,28),(4,14,17,27),(5,13),(6,25,19,12),(7,24),(8,10,21,23),(11,20),(15,32),(18,26)]])
Matrix representation of C22.SD32 ►in GL4(𝔽17) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 2 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 16 | 0 |
0 | 0 | 0 | 16 |
16 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
13 | 11 | 0 | 0 |
6 | 13 | 0 | 0 |
0 | 0 | 8 | 9 |
0 | 0 | 0 | 9 |
1 | 0 | 0 | 0 |
0 | 16 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 5 | 13 |
G:=sub<GL(4,GF(17))| [1,0,0,0,0,1,0,0,0,0,1,2,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,16,0,0,0,0,16],[16,0,0,0,0,16,0,0,0,0,1,0,0,0,0,1],[13,6,0,0,11,13,0,0,0,0,8,0,0,0,9,9],[1,0,0,0,0,16,0,0,0,0,1,5,0,0,0,13] >;
C22.SD32 in GAP, Magma, Sage, TeX
C_2^2.{\rm SD}_{32}
% in TeX
G:=Group("C2^2.SD32");
// GroupNames label
G:=SmallGroup(128,79);
// by ID
G=gap.SmallGroup(128,79);
# by ID
G:=PCGroup([7,-2,2,-2,2,-2,2,-2,56,85,422,387,520,1690,2804,1411,172,4037,2028,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=1,d^8=c,e^2=a,a*b=b*a,a*c=c*a,d*a*d^-1=a*b*c,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=a*c*d^7>;
// generators/relations
Export